

Greenzyme[®] Flood Summary

Greenzyme[®] - Brazilian Crude Oil

October 2005 File No.: 22507

Prepared by: **PTS** Laboratories, Inc. 4342 West 12th Street Houston, Texas 77055 713-680-2291

Enhanced Oil Recovery Testing

Experimental Objective: To show the effects on residual oil saturation that the introduction of an enzyme solution (GreenZyme[®]) will have in a homogeneous oil-saturated sandstone formation.

1. Acquire a 1.5" x 2.5" piece of 500 md, Berea sandstone having a porosity near 25%.

2. Acquire filtered crude oil having an oil gravity less than 25 degrees API

3. Saturate sample using brine solution and measure Kw at 1000 psi. stress.

4. Flow filtered erode oil across length of sample until the plug sample reaches Swi renditions. Measure KoSwi.

5. Row brine solution across length of sample until the plug sample reaches conditions and measure KwSor.

6. Age sample at 180 degrees F. for two weeks.

7. Flow 5 pore volumes of enzyme solution across length of core plug collecting effluent. Option: Monitor pore volumes of enzyme solution vs. oil

cut until there is a 99.9% enzyme quality produced.

8. Let sample soak for 2 days. Flush with brine solution and collect any final

effluent that might be removed from the core sample.

9. Determine final KwSor using brine solution.

10. Calculate Sor change triggered from the enzyme solution by Dean-Stark extracting the sample. Dean-Stark oil saturation combined with oil removed by enzyme flow will yield original Sor. Reduction of Sor created by enzyme influence will determine a calculated oil recovery percent using this methodology.

GreenZyme® Coreflood Unsteady-State Method

•Sample Preparation

One 1.50-inch diameter Berea core sample was selected for GreenZyme® coreflood tests under overburden conditions. The sample was cleaned, dried and properties were measured at 1000 psi net confining stress.

•Fluid Preparation

Synthetic brine was prepared using deionized water and reagent grade chemical.

The brine was filtered and degassed prior to use. An approximately 20 gravity crude oil sample was selected for the test. The crude oil sample was filtered and degassed prior to use.

•Pre-Test Procedure

The sample was vacuum saturated with brine and loaded into overburden cells at 1000 psi simulated reservoir stress.

To ensure full saturation, brine was injected against backpressure. Water permeability, Kw, was determined at 100 percent brine saturation. Crude oil was injected at constant rate to drive the sample

to residual water saturation, Swr..

Water and oil volumes produced were recorder.

Oil permeability at residual water saturation, KoSwr, was determined.

Water was injected at a constant rate of 4 cc/minute to drive the sample to residual oil saturation, Sur. Incremental volumes of water and oil production were collected as a function of time.

Permeability to water and residual oil saturation (Kw Sur) was measured.

•Sample Aging

Following the KwSor measurement, the sample was heated to 180°F while maintaining 1000 psi stress.

The sample was aged under these conditions for two weeks.

Upon completion of aging the sample was allowed to cool to room temperature.

•GreenZyme® Flood

Five pore volumes of full strength GreenZyme® was flowed through the sample, oil volumes produced were

monitored and recorded.

Once sufficient GreenZyme® was injected into the sample, flow was stopped and a 48 hour soak was conducted. After 48 hours flow was resumed using the simulated formation brine, flow was continued until a water cut of 99.9 percent was obtained. Oil volumes produced were monitored and recorded. Permeability to water at residual oil saturation (KwSor) was measured at the end of the test.

This test was repeated using GreenZyme® diluted to 3, 5 and 7 percent solutions. Test results are presented in tabular and graphical format.

Greenzyme® Flood Summery

Simulated Reservoir Stress: 1000 psi Test Temperature 77.0° F

Field	Berea Test Sample
Location:	N/A

Location.

Test Time, min.	Fluid Injected Pore Volume	Oil Produced, cm ³	Oil produced % Original Oil, in place
7% Green	Zyme ⁽ ₽) in Simulate	ed Formation Brine	
0.2	20.68	0.000	8.67
0.6	20.69	0.000	8.67
0.8	20.72	0.000	8.67
1.0	20.74	0.000	8.67
1.5	20.77	0.002	8.69
2.0	20.83	0.005	8.72
3.5	20.94	0.010	8.77
5.0	21.07	0.015	8.82
6.5	21.21	0.023	8.90
7.5	21.35	0.033	9.01
16.5	22.04	0.039	9.07
25.0	22.73	0.049	9.17
35.0	23.41	0.058	9.26
42.0	24.10	0.065	9.33
50.0	24.79	0.068	9.36
61.0	25.69	0.071	9.39
48 hours s Simulated	oak Formation Brine		
65	23.03	0.100	9.69
70	26.44	0.150	10.20
75	26.86	0.210	10.81
80	27.27	0.255	11.27
85	27.68	0.285	11.58
90	28.09	0.315	11.88
85	28.51	0.335	12.09
100	28.92	0.365	12.39
110	29.75	0.380	12.55
120	30.57	0.392	12.67
125	30.99	0.400	12.75

 \hat{k}

Oil Produced vs Brine injected

FULL STRENGTH GREENZYME® FLOOD SUMMARY

Simulated Reservoir Stress: 1000 psi Test Temperature 77.0° F

5

FieldBerea Test SampleLocation:N/A

	Democobility			Ι	nitial Condition	Data		Post Waterfloo	d Data
Sample ID	to Air, millidarcies	Porosity, percent	r ermeabury to Brine, millidarcies	initial Water Saturation (Swi), percent	Initial Oil Saturation (So), percent	Permeability to Oil at Initial Water Saturation (KoSwi), millidarcies	Residual Oil Saturation (Sor), percent	Oil Produced, percent OOIP	Permeability to Water at Residual Oil Saturation (KwSor), millidarcies
Berea#2	427	20.6	125	19.0	81.0	166	51.6	38.2	16.9

	Post 5	PV GreenZym	e Solution Flood	Post	t Water Flood A	ufter Enzyme
Sample ID	Residual Oil Saturation (Sor), percent	Additional Oil Produced percent OOIP	Permeability to Water at Residual Oil Saturation (KwSor), millidarcies	Residual Oil Saturation (Sor), percent	Additional Oil Produced percent OOIP	Permeability to Water at Residual Oil Saturation (KwSor), millidarcies
Berea#2	43.8	9.69		23.1	25.5	27.0

•

Oil Produced vs. Pore Volume Injected

Greenzyme® Flood Summery Simulated Reservoir Stress: 1000 psi Test Temperature 77.0° F

.

FieldBerea Test SampleLocation:N/A

	Darmanhility		Domochiliter to		Initial Condition	Data		Post Waterfloo	d Data
Sample ID	to Air, nullidarcies	Porosity, percent	renneabury to Brine, millidarcies	initial Water Saturation (Swi), percent	Initial Oil Saturation (So), percent	Permeability to Oil at Initial Water Saturation (KoSwi), millidarcies	Residual Oil Saturation (Sor), percent	Oil Produced, percent OOIP	Permeability to Water at Residual Oil Saturation (KwSor), millidarcies
Berea#2	427	20.6	125	19.0	81.0	126	37.2	54.0	18.3

		Post W	Vater Flood After	r GreenZyme
		Residual Oil	Additional	Pemeability to
	and a second sec	Saturation	Oil Produced	Water at Residual Oil
Sample	GreenZyme	(Sor),	Percent	Saturated (KWSor),
Ð	Solution	percent	00IP	millidarcies
Berea #2	3% 5% 7% Total	34.7 30.2 26.8	3.08 5.61 4.08 12.76	1.9 0.262 0.111

Greenzyme® Flood Summery

Simulated Reservoir Stress: 1000 psi Test Temperature 77.0° F

Field	
Location:	

Berea Test Sample N/A

cation.

Test Time, min.	Fluid Injected Pore Volume	Oil Produced, cm ³	Oil produced % Original Oil, in place
3% GreenZ	yme (Ē) in Simulate	d Formation Brine	
0.3	0.02	0.000	0.00
0.5	0.03	0.000	0.00
0.8	0.06	0.002	0.02
1.0	0.08	0.003	0.03
1.5	0.11	0.005	0.05
2.0	0.17	0.006	0.06
3.5	0.28	0.007	0.07
5.0	0.41	0.008	0.08
6.5	0.55	0.009	0.09
8.5	0.69	0.010	0.10
17.0	1.38	0.020	0.20
25.0	2.07	0.030	0.31
35.0	2.75	0.040	0.41
40.0	3.44	0.055	0.56
50.0	4.13	0.060	0.61
60.0	5.03	0.065	0.66
48 hours Simulatee	soak d Formation Brine		
65	5.37	0.070	0.71
70	5.78	0.100	1.02
75	6.20	0.125	1.28
80	6.61	0.150	1.53
85	7.02	0.200	2.04
90	7.43	0.235	2.40
95	7.85	0.255	2.60
100	8.26	0.270	2.76
110	9.09	0.280	2.86
120	9.91	0.292	2.98
125	10.33	0.300	3.06

Greenzyme® Flood Summery

Simulated Reservoir Stress: 1000 psi Test Temperature 77.0° F

Field	Berea Test Sample
Location:	N/A

Location:

Test Time, min.	Fluid Injected Pore Volume	Oil Produced, cm ³	Oil produced % Original Oil, in place
5% Green	Zyme (Ē) in Simulate	d Formation Brine	•
0.3	10.35	0.000	3.06
0.3	10.36	0.000	3.06
0.7	10.35	0.002	3.08
1.0	10.41	0.003	3.09
1.3	10.44	0.005	3.11
2.0	10.50	0.006	3.12
3.3	10.61	0.007	3.13
5.0	10.74	0.018	3.24
6.7	10.88	0.021	3.27
8.3	11.02	0.030	3.37
16.7	11.71	0.043	3.50
25.0	12.40	0.053	3.60
33.3	13.08	0.062	3.69
41.7	13.77	0.070	3.77
50.0	14.46	0.080	3.88
60.8	15.36	0.100	4.08
48 hours s Simulated	oak Formation Brine		
65	15.70	0.150	4.59
70	16.11	0.180	4.90
75	16.53	0.200	5.10
80	16.94	0.265	5.7
85	17.35	0.325	6.38
90	17.76	0.395	7.09
95	18.18	0.425	7.40
100	18.59	0.450	7.65
110	19.42	0.500	8.16
120	20.24	0.535	8.52
125	20.66	0.550	8.67